Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701
> catena-Poly[copper(II)-di- $\mu$-acetyl-acetonato-copper(II)-bis( $\mu$-4-hydroxy-3-methoxybenzaldehyde picoloylhydrazonato)] and (acetylacetonato)-(4-methoxybenzaldehyde picoloylhydrazonato)copper(II)

Li-Fang Jiang

Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
Correspondence e-mail: fanhue@gmail.com

Received 10 September 2010
Accepted 29 October 2010
Online 10 November 2010
In the two title copper(II) complexes, $\left[\mathrm{Cu} L\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]_{n}$, (I), and $\left[\mathrm{Cu}^{\prime}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]$, (II), respectively, where HL is 4 -hy-droxy-3-methoxybenzaldehyde picoloylhydrazone, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3}$ $\mathrm{O}_{3}$, and $\mathrm{H} L^{\prime}$ is 4-methoxybenzaldehyde picoloylhydrazone, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}$, the $\mathrm{Cu}^{\text {II }}$ ions display a highly Jahn-Tellerdistorted octahedral and a square-planar coordination geometry, respectively. In complex (I), two neighbouring $\mathrm{Cu}^{\mathrm{II}}$ atoms are bridged by $L^{-}$and acetylacetonate, alternately, giving rise to a one-dimensional chain of $\mathrm{CuN}_{2} \mathrm{O}_{4}$ octahedra interconnected by these two ligands along the $a$ axis. In addition, the hydroxy H atom of the vanillin group connects to the carboxyl O atom of the adjacent chain via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, giving rise to a three-dimensional supramolecular assembly. Complex (II) displays a discrete structure.

## Comment

Studies of acylhydrazone Schiff bases and the construction of complexes with transition metals are of great interest, not only because of their intriguing structural motifs, but also because of their important potential applications (Pickart et al., 1983; Sreekanth et al., 2004) such as catalytic materials (Duda et al., 2003) and magnetochemistry (Lin et al., 2008). The use of carefully selected multidentate ligands and metal ions has allowed the construction of polymers with defined geometries and special properties. From the structural point of view, picoloylhydrazone and its derivatives have been used extensively as versatile ligands for building extended structures as they have potential $N, O$-donor sites, which give rise to different coordination modes (Domiano et al., 1980; Wu \& Liu, 2003). As part of continuing investigations of these types of Schiff base ligands, this work presents the syntheses and structural characterization of two copper(II) complexes,
catena-poly[copper(II)-di- $\mu$-acetylacetonato-copper(II)-bis( $\mu$ -4-hydroxy-3-methoxybenzaldehyde picoloylhydrazonato)], $\left[\mathrm{Cu} L\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]_{n}$, (I), and acetylacetonato(4-methoxybenzaldehyde picoloylhydrazonato)copper(II), $\left[\mathrm{Cu} L^{\prime}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]$, (II), where $\mathrm{H} L$ and $\mathrm{H} L^{\prime}$ are 4-hydroxy-3-methoxybenzaldehyde picoloylhydrazone and 4-methoxybenzaldehyde

(I)

(II)
picoloylhydrazone, respectively. To the best of our knowledge, the title complexes represent the first examples of structurally characterized $\mathrm{Cu} L$ and $\mathrm{Cu} L^{\prime}$ complexes.


Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. [Symmetry codes: (ii) $1-x, 1-y, 1-z$; (iii) $-x, 1-y, 1-z$.]


Figure 2
The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.


Figure 3
The one-dimensional chain structure in (I). [Symmetry codes: (ii) $1-x, 1-y, 1-z$; (iii) $-x, 1-y, 1-z$.]

Structural views of (I) and (II) are shown in Figs. 1 and 2, respectively, and selected bond lengths and angles are given in Tables 1 and 3. In complex (I), the $\mathrm{Cu}^{\mathrm{II}}$ ion displays a highly Jahn-Teller-distorted $\mathrm{CuN}_{2} \mathrm{O}_{4}$ octahedron, with the equatorial plane defined by the two N atoms (pyridyl N 1 and hydrazine N 2 ) of the $L^{-}$ligand and atoms O 4 and O5 of the acetylacetonate ligand. The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 2$ distances are similar to the values reported for other copper complexes involving N -donor ligands (Table 4). The $\mathrm{Cu} 1-\mathrm{O} 4$ and $\mathrm{Cu} 1-\mathrm{O} 5$ bond lengths correspond to the distances observed in other Cu -acetylacetonate complexes (Heinze \& Reinhart, 2006). There is no significant deviation of the metal centre from the $\mathrm{N}_{2} \mathrm{O}_{2}$ equatorial plane, which shows a small but significant tetrahedral distortion. The maximum displacements from the least-squares plane through atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 4$ and O5 are -0.0798 (15) and 0.0824 (15) $\AA$ for atoms N2 and N 1 , respectively; Cu 1 is 0.0339 (16) $\AA$ below this plane. The two axial positions are occupied by carbonyl atom $\mathrm{O} 5^{\mathrm{ii}}$ of an acetylacetonate ligand [symmetry code: (ii) $1-x, 1-y, 1-z$ ]


Figure 4
The three-dimensional supramolecular structure of (I). [Symmetry code: (i) $x, \frac{1}{2}-y,-\frac{1}{2}+z$.]
and carboxyl atom $\mathrm{O} 1^{\text {iii }}$ of an $L^{-}$ligand [symmetry code: (iii) $-x, 1-y, 1-z$ ], with two weak coordination bonds of 2.847 (3) and 2.894 (3) Å, respectively (Das \& Pal, 2005; Heinze \& Reinhart, 2006).

The tridentate hydrazone ligand $L^{-}$is a bridging ligand to coordinating to two neighbouring $\mathrm{Cu}^{\mathrm{II}}$ ions through its donors carboxyl atom O 2 , hydrazine atom N 2 and phenolic atom O 1 . In addition, acetylacetonate atom O 5 acts as a bridging atom linking Cu 1 and $\mathrm{Cu} 1^{\mathrm{ii}}$. Therefore, a one-dimensional chain is built up, consisting of $\mathrm{CuN}_{2} \mathrm{O}_{4}$ octahedra connected alternately by pairs of the different ligands along the $a$ axis, shown in Fig. 3.

The planes through the acetylacetonate (O4/C15-C19/O5) and picoloylhydrazone ( $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1 / \mathrm{C} 6 / \mathrm{O} 1 / \mathrm{N} 2 / \mathrm{N} 3$ ) groups make dihedral angles of $17.40(18)$ and $8.60(18)^{\circ}$, respectively, with the equatorial $\mathrm{N}_{2} \mathrm{O}_{2}$ plane. More buckling of acetylacetonate than picoloylhydrazone allows for a closer approach of atom O5 towards $\mathrm{Cu} 1^{1 i}$ and simultaneously reduces the steric interaction between the two ligands (Bhadbhade \& Srinivas, 1993) (Fig. 3). The $\mathrm{O}-\mathrm{H}$ function of the vanillin group connects to the carboxyl O atom of the adjacent chain via an $\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\mathrm{i}}$ hydrogen bond [symmetry code: (i) $x$, $\left.\frac{1}{2}-y,-\frac{1}{2}+z\right]$, giving rise to a three-dimensional supramolecular assembly, as shown in Fig. 4.

In complex (II), atom Cu 1 displays a square-planar coordination geometry (Fig. 2). The $\mathrm{Cu} 1-\mathrm{N}$ and $\mathrm{Cu} 1-\mathrm{O}$ bond lengths in the $\mathrm{N}_{2} \mathrm{O}_{4}$ plane are comparable with those found in (I) (Table 3). However, unlike (I), (II) does not form chains but is rather a simple discrete complex. The closest distance between a $\mathrm{Cu}^{\mathrm{II}}$ ion and an O atom from a neighbouring molecule is 3.334 (4) $\AA$ for $\mathrm{Cu} 1 \cdots \mathrm{O} 3^{\mathrm{iiii}}$, indicating that no intermolecular interactions are present. Just as in (I), there is no significant deviation of the metal centre from the $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination plane and the distortion of this plane is even smaller. The maximum displacements from the least-squares plane through atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 3$ and O 4 are -0.042 (2) and 0.043 (2) $\AA$ for atoms N 2 and N 1 , respectively; Cu 1 is
0.0054 (19) $\AA$ below this plane. It is worth noting that the acetylacetonate (C15-C19/O3/O4) and picoloylhydrazone ( $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1 / \mathrm{C} 6 / \mathrm{O} 1 / \mathrm{N} 2 / \mathrm{N} 3$ ) planes make dihedral angles of 7.97 (18) and $6.43(15)^{\circ}$, respectively, with the $\mathrm{N}_{2} \mathrm{O}_{2}$ plane. The approximately planar conformation of the $\mathrm{Cu}^{\mathrm{II}}$ ion in complex (II) could be due to the absence of the $\mathrm{Cu} 1 \cdots \mathrm{O}^{\text {iii }}$ interaction, which reduces the steric interaction between the ligands and a second molecule compared with (I).

## Experimental

Ligand $H L$ was prepared by the reaction of picolinohydrazide and 4-hydroxy-3-methoxybenzaldehyde in a 1:1 molar ratio under reflux in ethanol for 3 h . The yellow product obtained on cooling was washed with anhydrous ethanol. Ligand $\mathrm{H} L^{\prime}$ was obtained by a similar procedure to that for $\mathrm{H} L$, using 4-methoxybenzaldehyde in place of 4-hydroxy-3-methoxybenzaldehyde. Both complexes were prepared using the same method. Complex (I) was synthesized by adding $\mathrm{Cu}(\mathrm{acac})_{2}$ (acac is acetylacetonate; $16.2 \mathrm{mg}, 0.10 \mathrm{mmol}$ ) to a solution of $\mathrm{H} L$ ( $27.1 \mathrm{mg}, 0.10 \mathrm{mmol}$ ) in methanol ( 15 ml ). The resulting mixture was stirred for 3 h at room temperature to afford a green solution. The solution was allowed to stand at room temperature for about two weeks, during which time dark-green crystals of (I) were produced at the bottom of the vessel on slow evaporation of the methanol (yield $56.0 \%$, based on Cu ). Complex (II) was obtained by using $\mathrm{H} L^{\prime}$ in place of $\mathrm{H} L$. After two weeks, dark-green crystals of complex (II) appeared (yield $49.0 \%$, based on Cu ).

## Compound (I)

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]$
$M_{r}=432.91$
Monoclinic, $P 2_{1} / c$
$a=8.4719$ (15) $\AA$
$b=23.586$ (3) $\AA$
$c=9.8635$ (14) A
$\beta=103.683(6)^{\circ}$

## Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.652, T_{\text {max }}=0.809$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.138$
$S=1.04$
4358 reflections
259 parameters
1 restraint

## Compound (II)

## Crystal data

```
\(\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]\)
\(M_{r}=416.91\)
Monoclinic, \(P 2_{1} / c\)
\(a=7.4198\) (15) A
\(b=14.969\) (3) \(\AA\)
\(c=15.885\) (3) \(\AA\)
\(\beta=91.78\) (3) \({ }^{\circ}\)
```

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

| $\mathrm{Cu} 1-\mathrm{O} 4$ | $1.902(3)$ | $\mathrm{Cu} 1-\mathrm{N} 1$ | $1.979(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Cu} 1-\mathrm{O} 5$ | $1.931(3)$ | $\mathrm{Cu} 1-\mathrm{N} 2$ | $1.996(3)$ |
|  |  |  |  |
|  |  |  | $95.14(12)$ |
| $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 5$ | $92.40(12)$ | $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2$ | $172.15(12)$ |
| $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$ | $172.69(14)$ | $\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 2$ | $81.99(12)$ |
| $\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 1$ | $90.77(12)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$ |  |

Table 2
Hydrogen-bond geometry ( $\left(\AA^{\circ}{ }^{\circ}\right.$ ) for (I).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O3-H3B $\cdots \mathrm{O}^{\mathrm{i}}$ | $0.79(3)$ | $1.93(4)$ | $2.636(4)$ | $149(6)$ |

Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Table 3
Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ ) for (II).

| $\mathrm{Cu} 1-\mathrm{O} 4$ | $1.892(3)$ | $\mathrm{Cu} 1-\mathrm{N} 2$ | $1.962(4)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Cu} 1-\mathrm{O} 3$ | $1.914(3)$ | $\mathrm{Cu} 1-\mathrm{N} 1$ | $1.982(4)$ |
|  |  |  |  |
|  |  |  |  |
| $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 3$ | $91.81(14)$ | $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$ | $176.03(16)$ |
| $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2$ | $95.25(15)$ | $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$ | $91.08(15)$ |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$ | $172.67(16)$ | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$ | $81.97(15)$ |

Table 4
Comparative geometric parameters ( $\AA$ ) for $\mathrm{Cu}-\mathrm{N}$ in copper complexes.

| Complex | $\mathrm{Cu}-\mathrm{N}$ (pyridyl) | $\mathrm{Cu}-\mathrm{N}$ (hydrazine) |
| :---: | :---: | :---: |
| (I) $\dagger$ | 1.979 (3) | 1.996 (3) |
| (II) $\dagger$ | 1.982 (4) | 1.962 (4) |
| $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{Cl}\right]$ \# | 1.989 (2) | 1.921 (2) |
| $\begin{gathered} {\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]-} \\ \left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} 8 \end{gathered}$ | 1.980 (4), 1.996 (3) | 2.008 (4), 1.919 (3) |
| $\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2} \mathrm{Cl}_{4}\right]_{n}$ ब ${ }^{\text {T }}$ | 2.013 (6) | 1.984 (6) |

## Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.680, T_{\text {max }}=0.806$

16505 measured reflections 4005 independent reflections 1904 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.125$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051 \quad 247$ parameters
$w R\left(F^{2}\right)=0.154 \quad$ H-atom parameters constrained
$S=0.91$
4005 reflections
$\Delta \rho_{\max }=0.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \mathrm{A}^{-3}$

In both complexes, H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with $\mathrm{Csp}{ }^{2}-\mathrm{H}=$ $0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The H atom bonded to the phenol O atom in (I) was located in a difference Fourier map and subesquently refined with the help of an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.82 (3) $\AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

## metal-organic compounds

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINTPlus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author thanks Minjiang University for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MX3036). Services for accessing these data are described at the back of the journal.

## References

Bai, Y., Dang, D.-B., Cao, X., Duan, C.-Y. \& Meng, Q.-J. (2006). Inorg. Chem. Соттип. 9, 86-89.

Bhadbhade, M. M. \& Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.
Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Das, S. \& Pal, S. (2005). J. Mol. Struct. 753, 68-79.
Domiano, P., Musatti, A., Nardelli, M., Pelizzi, C. \& Predieri, G. (1980). Inorg. Chim. Acta, 38, 9-14.
Duda, D., Govindasamy, L., Agbandje-McKenna, M., Tu, C., Silverman, D. N. \& McKenna, R. (2003). Acta Cryst. D59, 93-104.
Grove, H., Kelly, T. L., Thompson, L. K., Zhao, L. A., Xu, Z. Q., Abedin, T. S. M., Miller, D. O., Goeta, A. E., Wilson, C. \& Howard, J. A. K. (2004). Inorg. Chem. 43, 4278-4288.
Heinze, K. \& Reinhart, A. (2006). Inorg. Chem. 45, 2695-2703.
Lagrenée, M., Sueur, S. \& Wignacourt, J. P. (1991). Acta Cryst. C47, 11581160.

Lin, P.-H., Burchell, T. J., Clérac, R. \& Murugesu, M. (2008). Angew. Chem. Int. Ed. 47, 8848-8851.
Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. \& Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sreekanth, A., Kala, U. L., Nayar, C. R. \& Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.
Wu, W.-S. \& Liu, S.-X. (2003). Chin. J. Inorg. Chem. 19, 1065-1072.

